Bayesian selection of continuous-time Markov chain evolutionary models.
نویسندگان
چکیده
We develop a reversible jump Markov chain Monte Carlo approach to estimating the posterior distribution of phylogenies based on aligned DNA/RNA sequences under several hierarchical evolutionary models. Using a proper, yet nontruncated and uninformative prior, we demonstrate the advantages of the Bayesian approach to hypothesis testing and estimation in phylogenetics by comparing different models for the infinitesimal rates of change among nucleotides, for the number of rate classes, and for the relationships among branch lengths. We compare the relative probabilities of these models and the appropriateness of a molecular clock using Bayes factors. Our most general model, first proposed by Tamura and Nei, parameterizes the infinitesimal change probabilities among nucleotides (A, G, C, T/U) into six parameters, consisting of three parameters for the nucleotide stationary distribution, two rate parameters for nucleotide transitions, and another parameter for nucleotide transversions. Nested models include the Hasegawa, Kishino, and Yano model with equal transition rates and the Kimura model with a uniform stationary distribution and equal transition rates. To illustrate our methods, we examine simulated data, 16S rRNA sequences from 15 contemporary eubacteria, halobacteria, eocytes, and eukaryotes, 9 primates, and the entire HIV genome of 11 isolates. We find that the Kimura model is too restrictive, that the Hasegawa, Kishino, and Yano model can be rejected for some data sets, that there is evidence for more than one rate class and a molecular clock among similar taxa, and that a molecular clock can be rejected for more distantly related taxa.
منابع مشابه
Bayesian change point estimation in Poisson-based control charts
Precise identification of the time when a process has changed enables process engineers to search for a potential special cause more effectively. In this paper, we develop change point estimation methods for a Poisson process in a Bayesian framework. We apply Bayesian hierarchical models to formulate the change point where there exists a step < /div> change, a linear trend and a known multip...
متن کاملAn Introduction to Hidden Markov Models and Bayesian Networks
We provide a tutorial on learning and inference in hidden Markov models in the context of the recent literature on Bayesian networks. This perspective makes it possible to consider novel generalizations of hidden Markov models with multiple hidden state variables, multiscale representations, and mixed discrete and continuous variables. Although exact inference in these generalizations is usuall...
متن کاملTable of Contents List of Figures vii List of Tables
Detecting Patterns of Natural Selection Using Bayesian Generalized Linear Models by Daniel M. Merl Evolutitonary analyses of protein coding DNA attempt to discriminate between the time-dependent, sequence-wide demographic effects attributable to neutral processes such as genetic drift, and the domain-specific effects due to adaptive evolution. Amino acid sites displaying increased variability r...
متن کاملFast MCMC sampling for Markov jump processes and continuous time Bayesian networks
Markov jump processes and continuous time Bayesian networks are important classes of continuous time dynamical systems. In this paper, we tackle the problem of inferring unobserved paths in these models by introducing a fast auxiliary variable Gibbs sampler. Our approach is based on the idea of uniformization, and sets up a Markov chain over paths by sampling a finite set of virtual jump times ...
متن کاملFinancial Risk Modeling with Markova Chain
Investors use different approaches to select optimal portfolio. so, Optimal investment choices according to return can be interpreted in different models. The traditional approach to allocate portfolio selection called a mean - variance explains. Another approach is Markov chain. Markov chain is a random process without memory. This means that the conditional probability distribution of the nex...
متن کاملMapping Activity Diagram to Petri Net: Application of Markov Theory for Analyzing Non-Functional Parameters
The quality of an architectural design of a software system has a great influence on achieving non-functional requirements of a system. A regular software development project is often influenced by non-functional factors such as the customers' expectations about the performance and reliability of the software as well as the reduction of underlying risks. The evaluation of non-functional paramet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2001